
Detection and Verification of Program Behavior
: A Graph Grammar Approach

M.Sivalakshmi, T.M.Devi, K.AyyappaRaja

Syed Ammal Engineering College, Ramanathapuram

Abstract – In this work, a semi-automatic graph grammar
approach is developed to retrieving the hierarchical structure of
the program behavior. The hierarchical structure is built on
recurring substructures in a bottom-up fashion. Formulate the
behavior discovery and verification problem as a graph
grammar induction and parsing problem, i.e., automatically
iteratively mining qualified patterns and then constructing
graph rewriting rules. The syntax of the grammar represents
the behavioral properties of that program. Source code realizing
certain functionality could be reused for different programs.
Therefore, programs may have similar behavioral properties
when they execute similar functionalities. Furthermore, using
the induced grammar to parse the behavioral structure of a new
program could verify if the program has the same behavioral
properties specified by the grammar.

Index Terms— Visual language, graph grammar induction,
program comprehension, reengineering.

1. INTRODUCTION

With the wide deployment of software systems, software
maintenance has become a challenging and costly task due to
increasing software size and complexity, incomplete and
incorrect documentation, Software maintainers usually need
to understand a system before making changes. The program
behavior mining and verification problem develop a visual
language perspective using graph grammar induction and
parsing techniques. We exploit the power of a graph grammar
in specifying information visually with a precise meaning.
More especially, method calls in the execution trace of a
program can be naturally represented as a graph in which
nodes represent methods and dges indicate method calls.
Given such a graph, searching for frequent calling patterns
assists in discovering the behavior of a program. When the
call graph is considered as a visual sentence, the discovery
process is essentially a grammar induction. Integrating graph
grammar with grammar induction can support an automatic
analysis of a program behavior. The result with a visual
presentation can improve user comprehension with a precise
meaning.

A valid parsing result means that the new program satisfies
the same behavioral properties as the old program.
Consequently, two types of behavior verification can be
performed. verify acceptable call sequences in a scenario and
detect illegal behaviors or security related activities.

A graph grammar induction algorithm iteratively finds
common substructures from the given graph and organizes

the hierarchical substructures in a grammatical form. When a
common frequent substructure is found, a production will be
created. The substructure consisting of terminal and
nonterminal symbols identified from the graph is represented
as the right graph of the production, and new nonterminal
symbols will be created as the left graph. Then, the new
production will be applied to the current data set.

2. LITERATURE SURVEY

2.1 Constructing VEGGIE: Machine learning for context
Sensitive Graph Grammars

Context-sensitive graph grammar construction tools have
been used to develop and study interesting languages.
However, the high dimensionality of graph grammars results
in costly effort for their construction and maintenance.
Additionally, they are often error prone. These costs limit the
research potential for studying the growing graph based data
in many fields. Context-sensitive induction is extended from
the context-free induction of overlapping single node
recursive production rules. Overlap between instances of
common substructures provides a connection context between
those instances. Mapping the substructure defined by the
overlap to the instances provides the means for extracting
embedding information used in a production rule to create a
context-sensitive production rule; the induction process must
identify substructures within the host graph that cannot be
simply reduced to a single non-terminal as is done for
context-free grammars.

These substructures must contain some property that
challenges the induction of a context-free production rule. To
ensure the halting condition, an inferred context-sensitive
production rule must reduce two or more RHS nodes to a
single LHS non-terminal node. This ensures that the LHS size
is less than the RHS size. A requirement of the halting
condition .Non-terminal nodes are generated during the
induction process. As there are not predefined node types,
they are added by the induction system. These non-terminals
are free of multiple port definitions as a context-free
induction system only relies on the default ports.

2.2 Graph Grammar Induction on Structural Data for
Visual Programming

This work proposed a methodology and instrumentation
infrastructure toward the reverse engineering of UML
(Unified Modeling Language) sequence diagrams from

M.Sivalakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3875-3878

3875

dynamic analysis. However, such reverse-engineered
dynamic models can also be used for quality assurance
purposes. Another advantage is that our metamodels and
rules can then naturally be used as specifications to develop
tool prototypes. A more sophisticated analysis of the source
code to identify the different objects involved in interactions
is presented.

In particular, the technique is able to recognize when one call
site always refers to the same runtime object, or when two
different call sites do so, in which case, only one diagram
object is displayed, thus resulting in an accurate diagram. The
initial class structure of our prototype was indeed a direct
reflection of our metamodels. It is also important to note that
if our reverse engineering process were to be adapted to a
different distribution middleware, the metamodels and rules
would remain unchanged, except that timestamps might be
measured in a different way.

2.3 Toward the Reverse Engineering of UML Sequence
Diagrams for Distributed Java Software

This work introduces an algorithm, which is applied to trees
with labels on nodes and directed unlabeled edges. The trees
were generated from the structural representation of a
computer program and XML files. The graph grammar
inference algorithm was used to infer grammars from these
trees. The partial program example demonstrated the
application of the induction algorithm to rapid grammar
development for VPLs. A graph is defined with labeled
nodes and edges. Every edge of the graph can be directed or
undirected. The definition of a graph grammar is described as
the class of grammars that can be inferred by the induction
method, which is currently limited to Context-free grammars.

The main characteristic of the inferred grammar productions
is that they are recursive productions. Recursive productions
are inferred such that, for a given production, a nonterminal
node label on the left side appears one or more times in the
node labels of the graph on the right side. The method can
also infer non-recursive Productions which are frequent, non-
overlapping sub graphs of an input graph. Here, the author
extends our grammar to context-sensitive graph grammars
(CSGGs) and to study the induction algorithm's performance
in rapidly developing VPLs.

3. PROGRAM INDUCTION AND VERIFICATION

3.1 Execution trace

Execution traces of method invocations are collected during
program execution. We construct call graphs from the
execution traces using Abstracer and then abstract the call
graph based on abstraction criteria. Abstracer removes
execution traces that play less significant roles in representing
the program behavior and then represents the abstracted call
graph in GraphML. The abstracted call graph is the input to
the grammar induction engine of VEGGIE. VEGGIE can
automatically derive a set of graph rewriting rules from a

given graph using a compression-based substructure mining
algorithm.

In the current implementation, the following information are
recorded for each method invocation:

1. Names of classes, objects, and methods

2. Method invocation: enter-exit of every static or
nonstatic method.

3.

The abstraction ensures equivalent behavior semantics
between the original call graph and the abstracted one, and
allows users to focus on the activities. The abstraction on
loops and low-level methods satisfies the safe property,
meaning that methods in an abstracted scenario comply with
the causality properties of the original call graph. In other
words, the causal relationship between any two methods in an
abstracted scenario S’ remains if there exists a causal
relationship between the two methods in the uncompressed
scenario S. Therefore, our behavior pattern mining and
verification can be performed on abstracted call graphs.

3.2 Call graph Construction

A behavioral pattern describes activities that happen in an
order. To reflect this, we assign nodes in a call graph with
temporal attributes. Without a temporal order, the inferred
common patterns may not be correct even if they are
graphically isomorphic. We use logical time stamps to keep
track of methods’ order. According to the method calling
order the call graph is constructed

4. BEHAVIORAL STRUCTURE DISCOVERY AND

VERIFICATION

Graph grammar induction uses graph-based substructure
mining algorithms instead of text mining techniques. A
substructure is defined as a representation of recurring sub
graphs. An instance is one occurrence of such a substructure
in the graph data set. The substructures recognized by the
grammar induction procedure reveal hidden recurrent patterns
within the graph data set. The hierarchical relations within the
grammar can aid the developers in understanding and
analyzing the composition of large and complex legacy
systems. Those grammars can also be used to build graphs to
simulate the execution of a system. VEGGIE emphasizes on
the compressing of graph data sets rather than purely
searching for the frequent subgraphs. The compression ratio
for each substructure is calculated based on a minimum
description length (MDL), and the substructure with the
highest compression ratio among the competing substructures
is selected. Therefore, the substructure found in each iteration
may not be the most frequent one, but it can achieve the best
compression ratio for the given graph, i.e., the ratio between
the original and resulting graphs after the subgraphs is
replaced with a nonterminal node.

M.Sivalakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3875-3878

3876

5 RESULTS

Fig 1 shows an abstracted graph after removing the loop on
method addOne. In order to eliminate low-level details, our
approach allows a user to specify a threshold. If a method has
a call depth that is greater than the user specified threshold in
a call chain, this method is pruned.

Fig 2 shows an conflict between methods in abstract graph.
Each method have some rules to find the conflict between
them.

Fig 3 shows grammar for order topping to find any conflict
in their rules and find dependency about method in abstract
graph using graph grammar approach.

Fig 4 shows the complete parse result of the program and
their conflict,depencency and rules for their match

Fig. 1 Hierarchical behavior of the program

Fig 2 shows the rules of conflict

Fig 3 shows the rule1 of order topping conflict

. Fig 4 shows the parsing result for the graph

CONCLUSIONS

This proposed scheme develops the configuration code of a
program and a call graph construction. The proposed
algorithm develops a call graph using a abstractor tool. The
future work is to identify the call graph and verify the
program behavior using a graph grammar. We represent
program behavior as a call graph, and apply the Spatial Graph
Grammar formalism to discover and analyze the behavior
pattern within the call graph. An inferred

graph grammar and a syntactic parse tree visually represent
the hidden structures of the program behavior at different
abstraction levels. The substructures found by a grammar
induction algorithm are reusable software components.

M.Sivalakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3875-3878

3877

REFERENCES
[1] K. Ates, J.P. Kukluk, L.B. Holder, D.J. Cook, and K. Zhang, “Graph

Grammar Induction on Structural Data for Visual Programming,” Proc.
18th IEEE Int’l Conf. Tools with Artificial Intelligence, pp. 232- 242,
Nov. 2006.

[2] K. Ates and K. Zhang, “Constructing VEGGIE: Machine Learning for
Context-Sensitive Graph Grammars,” Proc. 19th IEEE Int’l Conf.
Tools with Artificial Intelligence, pp. 456-463, Oct. 2007.

[3] L. Baresi, R. Heckel, S. Tho¨ne, and D. Varro´ , “Modeling and
Validation of Service-Oriented Architectures: Application vs. Style,”
Proc. 11th European Software Eng. Conf. held jointly with Ninth ACM
SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 68-77, Sept.
2003.

[4] L. Baresi and R. Heckel, “Tutorial Introduction to Graph Transformation:
A Software Engineering Perspective,” Proc.First Int’l Conf. Graph
Transformation, 2002.

[5] H.A. Basit and S. Jarzabek, “Detecting Higher-Level Similarity Patterns
in Programs,” Proc. 10th European Software Eng. Conf. held jointly
with 13th ACM SIGSOFT Int’l Symp. Foundations of Software Eng.,
pp. 156-165, Sept. 2005.

[6] L.C. Briand, Y. Labiche, and J. Leduc, “Toward the ReverseEngineering
of UML Sequence Diagrams for Distributed Java Software,” IEEE
Trans. Software Eng., vol. 32, no. 9, pp. 642-663,Sept. 2006.

[7] G. Casella, G. Costagliola, F. Ferrucci, G. Polese, and G. Scanniello,
“Visual Languages for Defining Adaptive and Collaborative e-Learning
Activities,” Proc. IADIS Int’l Conf.: e-Soc. ’04, vol. 1, pp. 243-250,
July 2004.

[8] E.J. Chikofsky and J.H. Cross, II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp. 13-17, Jan.
1990.

[9] M. Christodorescu, S. Jha, and C. Kruegel, “Mining Specifications of
Malicious Behavior,” Proc. Sixth Joint Meeting of the European
Software Eng. Conf. and ACM SIGSOFT Int’l Symp. Foundations of
Software Eng., pp. 5-14, Sept. 2007.

[10] C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-Crasher: A Hybrid
Analysis Tool for Bug Finding,” ACM Trans. Software Eng. And
Methodology, vol. 17, no. 2, pp. 345-371, July 2008.

[11] G. Costagliola, V. Deufemia, and G. Polese, “A Framework for
Modeling and Implementing Visual Notations with Applications to
Software Engineering,” ACM Trans. Software Eng. and Methodology,
vol. 13, no. 4, pp. 431-487, Oct. 2004.

[12] G. Costagliola, A.D. Lucia, V. Deufemia, C. Gravino, and M. Risi,
Design Pattern Recovery by Visual Language Parsing,” Proc. Ninth
European Conf. Software Maintenance and Reeng., pp. 102-111, Mar.
2005.

[13] G. Costagliola, V. Deufemia, F. Ferrucci, and C. Gravino, “Constructing
Meta-CASE Workbenches by Exploiting Visual Language Generators,”
IEEE Trans. Software Eng., vol. 32, no. 3, pp. 156-175, Mar. 2006.

[14] G. Costagliola, V. Deufemia, and M. Risi, “Using Grammar- Based
Recognizers for Symbol Completion in Diagrammatic Sketches,” Proc.
Ninth Int’l Conf. Document Analysis and Recognition,pp. 1078-1082,
Sept. 2007.

[15] D.J. Cook and L.B. Holder, “Substructure Discovery UsingMinimum
Description Length and Background Knowledge,”J. Artificial
Intelligence Research, vol. 1, pp. 231-255, Feb. 1994.

M.Sivalakshmi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,3875-3878

3878

