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Abstract – In this work, a semi-automatic graph grammar 
approach is developed to retrieving the hierarchical structure of 
the program behavior. The hierarchical structure is built on 
recurring substructures in a bottom-up fashion. Formulate the 
behavior discovery and verification problem as a graph 
grammar induction and parsing problem, i.e., automatically 
iteratively mining qualified patterns and then constructing 
graph rewriting rules. The syntax of the grammar represents 
the behavioral properties of that program. Source code realizing 
certain functionality could be reused for different programs. 
Therefore, programs may have similar behavioral properties 
when they execute similar functionalities. Furthermore, using 
the induced grammar to parse the behavioral structure of a new 
program could verify if the program has the same behavioral 
properties specified by the grammar.  

Index Terms— Visual language, graph grammar induction, 
program comprehension, reengineering. 

 

1. INTRODUCTION 

With the wide deployment of software systems, software 
maintenance has become a challenging and costly task due to 
increasing software size and complexity, incomplete and 
incorrect documentation, Software maintainers usually need 
to understand a system before making changes. The program 
behavior mining and verification problem develop a visual 
language perspective using graph grammar induction and 
parsing techniques. We exploit the power of a graph grammar 
in specifying information visually with a precise meaning. 
More especially,    method calls in the execution trace of a 
program can be naturally represented as a graph in which 
nodes represent methods and dges indicate method calls. 
Given such a graph, searching for frequent calling patterns 
assists in  discovering the behavior of a program. When the 
call graph is considered as a visual sentence, the discovery 
process is essentially a grammar induction. Integrating graph 
grammar with grammar induction can support an automatic 
analysis of a program behavior. The result with a visual 
presentation can improve user comprehension with a precise 
meaning. 

A valid parsing result means that the new program satisfies 
the same behavioral properties as the old program. 
Consequently, two types of behavior verification can be 
performed. verify acceptable call sequences in a scenario and 
detect illegal behaviors or security related activities. 

A graph grammar induction algorithm iteratively finds 
common substructures from the given graph and organizes 

the hierarchical substructures in a grammatical form. When a 
common frequent substructure is found, a production will be 
created. The substructure consisting of terminal and 
nonterminal symbols identified from the graph is represented 
as the right graph of the production, and new nonterminal 
symbols will be created as the left graph. Then, the new 
production will be applied to the current data set. 

 

2. LITERATURE SURVEY 

2.1 Constructing VEGGIE: Machine learning for context 
Sensitive Graph Grammars 

Context-sensitive graph grammar construction tools have 
been used to develop and study interesting languages. 
However, the high dimensionality of graph grammars results 
in costly effort for their construction and maintenance. 
Additionally, they are often error prone. These costs limit the 
research potential for studying the growing graph based data 
in many fields. Context-sensitive induction is extended from 
the context-free induction of overlapping single node 
recursive production rules. Overlap between instances of 
common substructures provides a connection context between 
those instances. Mapping the substructure defined by the 
overlap to the instances provides the means for extracting 
embedding information used in a production rule to create a 
context-sensitive production rule; the induction process must 
identify substructures within the host graph that cannot be 
simply reduced to a single non-terminal as is done for 
context-free grammars.  

These substructures must contain some property that 
challenges the induction of a context-free production rule. To 
ensure the halting condition, an inferred context-sensitive 
production rule must reduce two or more RHS nodes to a 
single LHS non-terminal node. This ensures that the LHS size 
is less than the RHS size. A requirement of the halting 
condition .Non-terminal nodes are generated during the 
induction process. As there are not predefined node types, 
they are added by the induction system. These non-terminals 
are free of multiple port definitions as a context-free 
induction system only relies on the default ports. 

2.2 Graph Grammar Induction on Structural Data for 
Visual Programming 

This work proposed a methodology and instrumentation 
infrastructure toward the reverse engineering of UML 
(Unified Modeling Language) sequence diagrams from 
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dynamic analysis. However, such reverse-engineered 
dynamic models can also be used for quality assurance 
purposes. Another advantage is that our metamodels and 
rules can then naturally be used as specifications to develop 
tool prototypes. A more sophisticated analysis of the source 
code to identify the different objects involved in interactions 
is presented.  

In particular, the technique is able to recognize when one call 
site always refers to the same runtime object, or when two 
different call sites do so, in which case, only one diagram 
object is displayed, thus resulting in an accurate diagram. The 
initial class structure of our prototype was indeed a direct 
reflection of our metamodels. It is also important to note that 
if our reverse engineering process were to be adapted to a 
different distribution middleware, the metamodels and rules 
would remain unchanged, except that timestamps might be 
measured in a different way.  

 

2.3 Toward the Reverse Engineering of UML Sequence 
Diagrams for Distributed Java Software 

This work introduces an algorithm, which is applied to trees 
with labels on nodes and directed unlabeled edges. The trees 
were generated from the structural representation of a 
computer program and XML files. The graph grammar 
inference algorithm was used to infer grammars from these 
trees. The partial program example demonstrated the 
application of the induction algorithm to rapid grammar 
development for VPLs.  A graph is defined with labeled 
nodes and edges. Every edge of the graph can be directed or 
undirected. The definition of a graph grammar is described as 
the class of grammars that can be inferred by the induction 
method, which is currently limited to Context-free grammars.  

The main characteristic of the inferred grammar productions 
is that they are recursive productions. Recursive productions 
are inferred such that, for a given production, a nonterminal 
node label on the left side appears one or more times in the 
node labels of the graph on the right side. The method can 
also infer non-recursive Productions which are frequent, non-
overlapping sub graphs of an input graph. Here, the author 
extends our grammar to context-sensitive graph grammars 
(CSGGs) and to study the induction algorithm's performance 
in rapidly developing VPLs. 

 
3. PROGRAM INDUCTION AND VERIFICATION 

3.1 Execution trace 

Execution traces of method invocations are collected during 
program execution. We construct call graphs from the 
execution traces using Abstracer and then abstract the call 
graph based on abstraction criteria. Abstracer removes 
execution traces that play less significant roles in representing 
the program behavior and then represents the abstracted call 
graph in GraphML. The abstracted call graph is the input to 
the grammar induction engine of VEGGIE. VEGGIE can 
automatically derive a set of graph rewriting rules from a 

given graph using a compression-based substructure mining 
algorithm. 

In the current implementation, the following information are 
recorded for each method invocation: 

1. Names of classes, objects, and methods 

2. Method invocation: enter-exit of every static or 
nonstatic method. 

3.  

The abstraction ensures equivalent behavior semantics 
between the original call graph and the abstracted one, and 
allows users to focus on the activities. The abstraction on 
loops and low-level methods satisfies the safe property, 
meaning that methods in an abstracted scenario comply with 
the causality properties of the original call graph. In other 
words, the causal relationship between any two methods in an 
abstracted scenario S’ remains if there exists a causal 
relationship between the two methods in the uncompressed 
scenario S. Therefore, our behavior pattern mining and 
verification can be performed on abstracted call graphs. 

 

3.2 Call graph Construction 

A behavioral pattern describes activities that happen in an 
order. To reflect this, we assign nodes in a call graph with 
temporal attributes. Without a temporal order, the inferred 
common patterns may not be correct even if they are 
graphically isomorphic. We use logical time stamps to keep 
track of methods’ order. According to the method calling 
order the call graph is constructed 

 

4.  BEHAVIORAL STRUCTURE DISCOVERY AND 

VERIFICATION 

Graph grammar induction uses graph-based substructure 
mining algorithms instead of text mining techniques. A 
substructure is defined as a representation of recurring sub 
graphs. An instance is one occurrence of such a substructure 
in the graph data set. The substructures recognized by the 
grammar induction procedure reveal hidden recurrent patterns 
within the graph data set. The hierarchical relations within the 
grammar can aid the developers in understanding and 
analyzing the composition of large and complex legacy 
systems. Those grammars can also be used to build graphs to 
simulate the execution of a system. VEGGIE emphasizes on 
the compressing of graph data sets rather than purely 
searching for the frequent subgraphs. The compression ratio 
for each substructure is calculated based on a minimum 
description length (MDL), and the substructure with the 
highest compression ratio among the competing substructures 
is selected. Therefore, the substructure found in each iteration 
may not be the most frequent  one, but it can achieve the best 
compression ratio for the given graph, i.e., the ratio between 
the original and resulting graphs after the subgraphs is 
replaced with a nonterminal node. 
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5  RESULTS 

Fig 1 shows an abstracted graph after removing the loop on 
method addOne. In order to eliminate low-level details, our 
approach allows a user to specify a threshold. If a method has 
a call depth that is greater than the user specified threshold in 
a call chain, this method is pruned. 

Fig 2 shows an conflict between methods in abstract graph. 
Each method have some rules to find the conflict between 
them. 

Fig 3 shows grammar for order topping to find   any conflict 
in their rules and find dependency about method in abstract 
graph using graph grammar approach. 

Fig 4 shows the complete parse result of the program and 
their conflict,depencency and rules for their match 

 

 
Fig. 1 Hierarchical behavior of the program 

 

 
Fig 2 shows the rules of conflict 

 

 
Fig 3 shows the rule1 of order topping conflict 

 

 
. Fig 4  shows the parsing result for the graph 

 

CONCLUSIONS 

This proposed scheme develops the configuration code of a 
program and a call graph construction. The proposed 
algorithm develops a call graph using a abstractor tool. The 
future work is to identify the call graph and verify the 
program behavior using a graph grammar. We represent 
program behavior as a call graph, and apply the Spatial Graph 
Grammar formalism to discover and analyze the behavior 
pattern within the call graph. An inferred 

graph grammar and a syntactic parse tree visually represent 
the hidden structures of the program behavior at different 
abstraction levels. The substructures found by a grammar 
induction algorithm are reusable software components. 
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